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ABSTRACT

The gravitational lensing of distant galaxies by mass along the line-of-sight (cosmic shear) is a
sensitive probe of both the expansion and structure growth rates of the Universe. The massive amount
of data from the Large Synoptic Survey Telescope (LSST) and other surveys can be used to infer
the properties of cosmic shear and the intrinsic properties of the distorted galaxy populations. We
describe how Hierarchical Bayesian Models can be used to infer these properties while marginalizing
nuisance parameters.

1 Introduction

The presence of mass (dark and luminous matter) in the line-of-sight path of light distorts the observed images of light
sources. The distribution of this foreground mass can be inferred by measuring slight correlations in the observed
properties of light sources in a given patch of the sky. Estimating this shear is not trivial as we do not know the intrinsic
properties of the light sources.

Figure 1: Geometry for gravitational lensing of distant galaxies.
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This distortion caused by mass in the path of light is of the order of ∼ 0.1% the instrinsic shape of galaxies. If the
intrinsic shape of a galaxy is denoted by εint, the distorted ellipticity εsh observed under the presence of cosmic shear g
is given by

εsh ≈ εint + εsh (1)

Fig 2. shows an exagerrated version of this gravitaitonal lensing.

Figure 2: Intrinsic Ellipticities (blue) and Sheared Ellipticities (purple)

Inferring the cosmic shear from observed data is an intractable inverse modeling problem. By using a hierarchical
bayesian model, we can take effects due to different factors like image noise, atmospheric distortions and cosmic
shear into account infer mass distribution and intrinsic properties. The model also allows us to update our beliefs with
incoming data and to marginalize out unknowable nuisance parameters. The forward process is shown in Fig 2.

Figure 3: Illustration of the forward process.

Our observations are "postage stamps" of galaxy images. Each postage stamp contains 10-100 galaxies. For this report,
we assume our observations are observed ellipcities εobs and other galaxy properties like flux (φ), redshift (z) and radius
(r), infered from galaxy images with a noise parameter Σn that accounts for the last three stages of the forward process.
Our goal is to determine the cosmic shear g and infer the covariances between the intrinsic galaxy properties (eg bigger
galaxies might be brighter, but they might also be farther).

While we are conveniently pushing the last three stages of the forward process into Σn, an extended treatment of this
problem can be found in [1].
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2 Statistical Framework

2.0.1 Univariate Toy Model

We begin with a simple spherical cow toy problem. Given observations Di, which is the observed ellipticity for galaxy
i, we want to infer shear g. The intrinsic ellipcities are normally distributed with variance σ2

e . The generating process in
this case is defined as:

P (D|εsh, σn) = ND(εsh, σ
2
n)

P (εint|σ2
e) = Nεint(0, σ

2
e)

P (εint(εsh, g)|σ2
e) = N(εsh−g)(0, σ

2
e)

with εsh ≈ εint + g whereσ2
n is the noise induced in εsh due to factors such as atmospheric distortion and we want to

infer σ2
e and g from observations of Ngal galaxies.

i= 1. . . N
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Figure 4: Probabilistic Graphical Model of our toy model.

For a single galaxy the likelihood is given by,

P (D|εint, g) = P (D|εsh(εint, g)) (2)

We don’t need to know the unsheared shapes of each galaxy. Marginalizing εint out,

P (D|g) =

∫ ∞
−∞

dεintPr(D|εint, g, σn)Pr(εint|I) (3)

P (D|g) =
e
− (Di−g)

2

2(σe+σn)2√
2π (σe + σn) 2

(4)

For Ngal galaxies,

P ({Di}
Ngal
1 |g) =

Ngal∏
i=1

e
− (Di−g)

2

2(σe+σn)2√
2π (σe + σn) 2

(5)

which can be written as  e
− (−g)2

2(σe+σn)2√
2π (σe + σn) 2

Ngal

∗
Ngal∏
i=1

e(2Dig−D
2
i ) (6)

Simplifying,
P ({Di}

Ngal
1 |g) = (Ng(0, (σe + σn)2))Ngal ∗ e−(D

2−2gNgalD+σ2
n) (7)

where D = εsh is the mean of D distribution
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Using this likelihood and appropriate conjugate priors like the following:

π(g) = Ng(0, σ
2
g)

π(σ2
e) = Γ−1sigma2e

(a, b)

where Γ−1 is the Inv. Gamma distribution

We can easily use Gibbs sampling to estimate g and σ2
e with rapid convergence.

Figure 5: Gibbs Sampling results from the toy model. Green line denotes true value.

2.0.2 Hairier Model

The simple toy model works well when there is plentiful of data and we are only observing one ellipticity εobs. In actual
observations, there are two shape parameters ε1 and ε2 that are distorted by g and other non-shape parameters like flux,
radius etc which are not distorted by g and might not follow gaussian distribution. Moreover, galaxy postage stamps
often have very few (≈ 10 data points. We use importance sampling with an interim prior to augment our observations.

Consider this problem: Our galaxy image model parameters are, ω = [ε1, ε2, ν, r, φ], where

ε1 ∼ N(0, σe1).

ε2 ∼ N(0, σe2).

ν ∼ N(µν , σν).

r ∼ lognorm(µr, σr).

φ ∼ powerlaw(a).

In the weak lensing regime, εsh ≈ εint + g.

ωsh = [ε1 + g, ε2 + g, ν, r, φ].

We can transform the non-Gaussian distributions into approximately Gaussian distributions via,

g(r) = log(r).

h(φ) = log(
φa

1− φa
).

So the transformed data is,
ω′ ≡ [ε1, ε2, ν, g(r), h(φ)].

ω′sh = [ε1 + g, ε2 + g, ν, g(r), h(φ)].
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where ω′ ∼ N(α,Σint). We define this transformation as

ω′ = f(ω).

with Jacobian J . Then,

J ≡
∣∣∣∣dω′dω

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1

r 0
0 0 0 0 a

φ(1−φa)

∣∣∣∣∣∣∣∣∣ (8)

Figure 6: PGM for transformed parameters

Importance Sampling

The monte carlo integration for some integral
∫
f(x)p(x)dx is:∫

f(x)p(x)dx ≈ 1

N

N∑
i=1

f(xi), xi ∼ p(x). (9)

But sometimes we can’t sample from p(x) or don’t get sufficiently precise results with it. In that case, we use importance
sampling, by using a distribution q(x) that is easier to sample from.∫

f(x)p(x)dx =

∫
f(x)p(x)

q(x)
q(x)dx ≈ 1

N

N∑
i=1

p(xi)

q(xi)
f(xi), xi ∼ q(x). (10)

We added weights p(xi)
q(xi)

to the monte carlo sum in Eqn 1.

Approximating the Likelihood

For inference of galaxy distribution parameters, we aim to evaluate the marginal likelihood,

P (D|α,Σe, g) ∝
∫
dωiP (ωi(ωsh, g)|α,Σe, g)P (D|ω). (11)

Transforming ω to ω′,

P (D|α,Σe, g) ∝
∫
dω′

∣∣∣∣ dωdω′
∣∣∣∣ P (ω′(ω′sh, g)|α,Σe, g)P (D|ω′). (12)

Using an interim prior I ,

P (D|Σ) =

∫
dω′

∣∣∣∣ dωdω′
∣∣∣∣ [P (D|ωsh = f−1(ω′sh))P (ωsh|I)

] P (ω′(ω′sh, g)|α,Σint, g)

P (ωsh|I)
., (13)

5



CSE 8803 IUQ FINAL REPORT

we get the likelihood for all galaxies via importance sampling as follows,

P ({Di}Ni=1|Σ) ∝
N∏
i=1

Zi
K

K∑
j=1

J−1(ωij)
P (ω′ij(ω

′
sh = f(ωsh), g)|α,Σint, g)

P (ωij,sh|I)
. (14)

where ωsh ∼
[
P (d|ωsh = f−1(ω′sh))Prωsh|I)

]
are the K samples drawn.
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