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ABSTRACT

The gravitational lensing of distant galaxies by mass along the line-of-sight is a
sensitive probe of both the expansion and structure growth rates of the Universe.
The massive amount of data from the Large Synoptic Survey Telescope (LSST)
and other surveys can be used to infer the properties of cosmic shear. We describe
how Hierarchical Bayesian Models can be used to infer these properties while
marginalizing nuisance parameters.

WEAK LENSING AND COSMOLOGY

The presence of mass (dark and luminous matter) in the line-of-sight path of light
distorts the observed images of light sources. The distribution of this foreground
mass can be inferred by measuring slight correlations in the observed properties of
light sources in a given patch of the sky. Estimating the shear is not easy as we do
not know the intrinsic properties of the light sources.

Figure: Geometry for gravitational lensing of distant galaxies.

PROBABILISTIC MODEL

Inferring the cosmic shear from observed data is an intractable inverse modeling
problem. By using a hierarchical bayesian model, we can take effects due to
different factors like image noise, atmospheric distortions and cosmic shear into
account infer mass distribution and intrinsic properties. The model also allows us
to update our beliefs with incoming data and to marginalize out unknowable
nuisance parameters.

Figure: Illustration of the forward process.

P(γ|{Di}N
1 ) ∝ P({Di}N

1 |γ)P(γ) (1)
Where γ is the property we are investigating, Di is the data for the ith galaxy,
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1 |γ) is the likelihood and P(γ) encodes our prior belief.

UNIVARIATE TOY MODEL

To determine the performance and validity of different techniques, we used a toy
model where the data consisted only of observed galaxy ellipticities εsh. In the toy
universe, the intrinsic ellipticities follow a Normal distribution Nεint(0, σe), with
shear g added within weak lensing limits: εsh ≈ εint + g. We also added gaussian
noise σn to observed ellipticities.
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Figure: Probabilistic Graphical Model of our toy model.

Our goal was to infer the value of g and σe from data generated using the above
scheme. For this model, the analytical solution was a simple integral and we used it
to check other techniques.
The observed properties depend on intrinsic properties which we do not know
about. In this model, εsh depends on εint. We marginalize out such nuisance
parameters.

P(Dn|γ) ∝
∫

dε(int,n)P(Dn|ε(int,n), γ)P(ε(int,n)|I) (2)

We used the following techniques to generate posterior distributions:
I Markov Chain Monte Carlo through Gibbs Sampling
I Importance Sampling with an interim prior

(a) Gibbs Sampling with Inv Gamma prior. (b) Imp. Sampling with normal interim prior.

Figure: Posterior distributions generated using Gibbs Sampling and Importance Sampling.
True value denoted by green line (σe = 0.258).

While Gibbs sampling performed slightly faster in the toy model, it required more
data as compared to importance sampling to get comparable results. Also, Gibbs
sampling requires closed form conditional distributions, which can not always be
derived for multivariate models. Importance sampling gave results with less
variance and can be generalized for multivariate models.

MULTIVARIATE MODEL

To apply a hierarchical probabilistic model to real data, we can’t ignore non-shape
parameters like flux, size and light profile. As a proof of concept, we extended the
toy model to handle multiple correlated parameters. The figure below shows how
the posterior distribution generated using importance sampling varies with two
correlated parameters in the extended toy model.

Figure: Posterior distribution for diagonal elements of a 2X2 covariance matrix Σ.
The peak corresponds to the true value (0.258,0.258).

RESULTS

I We validated monte carlo methods for marginal probability inference.
I The Jupyter notebooks created for the toy model can be used as tutorials on

hierarchical bayesian models for cosmic shear.
I The extended toy model is the first demonstration of multivariate modeling for

galaxies in a hierarchical framework.

FUTURE DIRECTIONS

I Generalize the multivariate model to include any number of property
parameters. Also, there are many design questions like the choice of priors,
number of samples etc that need to be explored.

I Add Pareto Smoothed Importance Sampling.
I Add better uncertainty quantification (eg Kullback-Liebler divergence to

compare distributions).
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