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Large Scale Structure

Motivation

 Was on a late night flight in
February, noticed the view
outside looks like large scale
structure.

| ooked it up as soon as | landed.

This looks like large scale structure.
The growth of human populations looks like the evolution

of the universe.

Can be used as a topic for emergence course presentation.
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The spatial distribution of people exhibits clustering across a wide range of scales, from household
(~ 10"?km) to continental (~ 10* km) scales. Empirical data indicates simple power-law scalings
for the size distribution of cities (known as Zipf’s law) and the population density fluctuations as a
function of scale. Using techniques from random field theory and statistical physics, we show that
these power laws are fundamentally a consequence of the scale-free spatial clustering of human popu-
lations and the fact that humans inhabit a two-dimensional surface. In this sense, the symmetries of
scale invariance in two spatial dimensions are intimately connected to urban sociology. We test our
theory by empirically measuring the power spectrum of population density fluctuations and show
that the logarithmic slope a@ = 2.04 4 0.09, in excellent agreement with our theoretical prediction
a = 2. The model enables the analytic computation of many new predictions by importing the
mathematical formalism of random fields.
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Two Point Autocorrelation Function

* “Given a random galaxy in a location, the correlation function describes the
probability that another galaxy will be found within a given distance.”[1]

» We use overdensity o(X) = [(p(X)/p) — 1]

 The two-point correlation function is defined as:

§(|X1—X2|) = <5(X1)5(X2)>

|
= % Jd3X5(X)5(X + r), where r = |X1 — X2|



Matter Power Spectrum

* |In Fourier space,
d’k
(27)3

 Power spectrum is defined as:

5ke k- (Xl — XZ)

- |

<5k51’(> = (27z)3513) (k — K’) P(k), where 0, is the Dirac-delta function.



Matter Power Spectrum

k3 P(k)

. Conventional to define dimensionless power spectrum A*(k) = "
T




Matter Power Spectrum
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Zipf’s Law for Cities



Zipf’'s Law
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Zipf’s Law

 The rank of a city is inversely proportional
to the number of people who live there.
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Fig 4. Log-log plot of Size vs Rank
for 135 largest US metropolitan
areas in 1991[5]




Setup

2

» Population density p over plane |

* We study the population density fluctuation, 6(x) = [(p(x)/p) — 1]
where p is the average density



Setup

Fourier expansion of population
fluctuation:

1 |
5(X) = — szkéke‘lkx
2T



Setup

. Power Spectrum in 2D: {88 ) = 27)*6} (k — k') P(k)
k*P(k) Sp 1

represents (— ) over scale —

(2r) p k

. Dimensionless: Az(k) —



Getting to Zipf’s Law

1

. Consider an overdensity of size —

k

 [The habitat can expand or contract at each time step.

o Spatial extent changes, but overdensity remains constant.



Getting to Zipf’'s Law

» Define a monotonically decreasing function X(k)

. Measure of spatial extent of an overdensity (eg X(k)  1/k or 1/k?)
., ImX=0

k— o0

* For an infinite landmass, overdensity tends to 0.



Getting to Zipf’'s Law

e Change of variables: A(X(k)) = A(k)
« Random walk in X,

« Till overdensity disappears or reaches some maximum X, .

» For a continental length scale 1/k, . ,

X, . = X(kmin)



Getting to Zipf’'s Law

 For alarge ensemble of overdensities, this leads to a diffusion-like process

oA 0°A
R  W—
ot 0X?
* For along enough timescale, this V\éi” settle to a stead-state solution
X
A(X) — Constant, for1,, .~ )

 We went over this in class for the Casino earnings problem (1D Diffusion)



Getting to Zipf’'s Law

* Under these conditions, we get

P(k) o k=2

 Using this power spectrum P(k), we can calculate populations for different
areas.

* A city is defined as an area A where the density of population (and
overdensity) is greater than some threshold 0.

N = [ p(X)d*x = pPc XA
XEA



Experimental Confirmation

* Empircally measured: 10
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Fig. 6 Empirically measured power
spectrum vs predicted



Computational Simulation
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Fig. 7 Monte Carlo simulation of
population density distribution, each
connected component is a city

Field
P(k) = Pyk™*

Result
n(N) < N~2



Code

Generating population dens
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Code

Analyzing city maps using easily available computer vision tools

Estimating population and “cities”, using light as a surrogate for population density



Conclusions

e Zipf's Law can be derived from population density as the fundamental unit,
instead of cities

* This formulation can also be used for other systems (eg social networks|[5])

* Simulation code in progress
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Panspermia

Hypothesis that life exists throughout the Universe and is distributed by various
phenomena



Some results

inhabited inhabited

uninhabited

uninhabited

Space Space

Fi1G. 1.— Schematic diagrams of the topology of the bio-inhabited planets within the galaxy for the panspermia case (left) and no
panspermia case (right). In the panspermia case, once life appears it begins to percolate, forming a cluster that grows with time. Life can
ocassionally spontaneously arise after the first bio-event, forming clusters that are smaller than more mature clusters. (The limiting case
where life spontaneously arises once and then spreads to the rest of the galaxy would correspond to a single blue triangle. In the "sudden”
scenario, all triangles start at the same cosmic time and are thus the same size.) As time progresses, the clusters eventually overlap and the
galaxy’s end state is dominated by life. In the no panspermia scenario, life cannot spread: there is no phase transition, but a very gradual
saturation of all habitable planets with life. Observations of nearby habitable exoplanets could statistically determine whether panspemia
is highly efficient (left), inefficient (right), or in some intermediate regime.




Some results
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Figure 1. A slice from a percolation simulation on a simple cubic lattice in three dimensions.
Here N=6 and P=1/3. Filled circles denote “colonizing” sites, open circles “non-colonizing”
sites, and the absence of circles represents sites not visited. The irregular shape of the boundary
and large voids in the percolation structure are clearly visible.

 for p<p., small and isolated clusters are scattered
throughout the lattice,

e for p>p., a giant cluster emerges that spans the entire
lattice.



Questions, Comments, Concerns?

LET ME STOP YOU RIGHT




