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Cities and Galaxies



• Was on a late night flight in 
February, noticed the view 
outside looks like large scale 
structure.


• Looked it up as soon as I landed.

Motivation





Cosmology



Two Point Autocorrelation Function

• “Given a random galaxy in a location, the correlation function describes the 
probability that another galaxy will be found within a given distance.”[1]


• We use overdensity 


• The two-point correlation function is defined as:
 

 

, where  

δ(x) ≡ [(ρ(x)/ρ̄) − 1]

ξ ( x1 − x2 ) = ⟨δ (x1) δ (x2)⟩
=

1
V ∫ d3xδ(x)δ(x + r) r = x1 − x2



Matter Power Spectrum

• In Fourier space, 
 




• Power spectrum is defined as: 
 

, where  is the Dirac-delta function.

ξ(r) = ∫
d3k

(2π)3
δkeik⋅(x1 − x2)

⟨δkδ′ k⟩ = (2π)3δ3
D (k − k′ ) P(k) δD



Matter Power Spectrum

• Conventional to define dimensionless power spectrum Δ2(k) =
k3P(k)

2π2



Matter Power Spectrum

Fig. 1 Observed Power Spectrum[2] Fig. 2 Observed Power Spectrum[3]



Zipf’s Law for Cities



Zipf’s Law

Fig 3. Rank/
Frequency Plots 
(Newman’s paper)
[4]



Zipf’s Law

• The rank of a city is inversely proportional 
to the number of people who live there.


• P(N) ∝
1

N2

Fig 4. Log-log plot of Size vs Rank 
for 135 largest US metropolitan 
areas in 1991[5] 



Setup

• Population density  over plane 


• We study the population density fluctuation, 
where  is the average density 

ρ ℝ2

ρ̄
δ(x) ≡ [(ρ(x)/ρ̄) − 1]



Fourier expansion of population 
fluctuation:    
 

 
 
δ(x) =

1
2π ∫ d2kδke−ikx

Setup



Setup

• Power Spectrum in 2D: 


• Dimensionless: , represents  over scale 

⟨δkδk′ ⟩ = (2π)2δ2
D (k − k′ ) P(k)

Δ2(k) =
k2P(k)
(2π)

(
δρ
ρ

)2 1
k



Getting to Zipf’s Law

• Consider an overdensity of size 


• The habitat can expand or contract at each time step.


• Spatial extent changes, but overdensity remains constant.

1
k



Getting to Zipf’s Law

• Define a monotonically decreasing function 


• Measure of spatial extent of an overdensity (eg  or )


• 


• For an infinite landmass, overdensity tends to 0.

X(k)

X(k) ∝ 1/k 1/k2

lim
k→∞

X = 0



Getting to Zipf’s Law

• Change of variables: 


• Random walk in ,


• Till overdensity disappears or reaches some maximum 


• For a continental length scale , 

Δ(X(k)) = Δ(k)

X

Xmax

1/kmin Xmax = X(kmin)



Getting to Zipf’s Law

• For a large ensemble of overdensities, this leads to a diffusion-like process 
 




• For a long enough timescale, this will settle to a stead-state solution 

, for 


• We went over this in class for the Casino earnings problem (1D Diffusion)

∂Δ
∂t

= D
∂2Δ
∂X2

Δ(X) → Constant Trelax ∼
X2

D



Getting to Zipf’s Law

• Under these conditions, we get  
 




• Using this power spectrum , we can calculate populations for different 
areas. 


• A city is defined as an area A where the density of population (and 
overdensity) is greater than some threshold 

P(k) ∝ k−2

P(k)

δc

N = ∫x∈A
ρ(x)d2x = ρC × A



Experimental Confirmation

• Empircally measured: 
 

, 
 
where 

P(k) ∝ k−α

α = − 2.04 ± 0.09

Fig. 6 Empirically measured power 
spectrum vs predicted



Computational Simulation

Fig. 7 Monte Carlo simulation of 
population density distribution, each 
connected component is a city

n(N) ∝ N−2

Result

Field
P(k) = P0k−2



Code
Generating population density fields from an n-body simulator



Code
Analyzing city maps using easily available computer vision tools

Estimating population and “cities”, using light as a surrogate for population density



Conclusions

• Zipf’s Law can be derived from population density as the fundamental unit, 
instead of cities


• This formulation can also be used for other systems (eg social networks[5])


• Simulation code in progress



Aliens?



Down the rabbit hole



Down the rabbit hole



Down the rabbit hole



Panspermia

Hypothesis that life exists throughout the Universe and is distributed by various 
phenomena



Some results



Some results



Questions, Comments, Concerns?


