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Abstract: Cellular automata are known for their remarkable ability to exhibit complex behaviors from a few 

simple rules. With the aid of Java applets and visualization hardware, we explore 1 to 2 dimensional cellular 

automation which includes elementary cellular automata, the Game of Life and spiral waves. And also when 

applicable, explore the possible application of them.

1.   INTRODUCTION 

Cellular automata (CA) are discrete, rule-based 

computational systems first proposed by von 

Neumann in early 1950s. They have been 

observed to exhibit remarkably complex behavior 

from simple rules which can be useful to model 

complex systems in the scientific field.1  

The simple model consist of a lattice of regularly 

spaced cells, each with a finite number of state. 

Theoretically, this lattice can be of any 

dimensions but the model is largely studied in our 

physical dimensions ranging from 1 to 3 

dimensions. The number of cells in each 

dimension can be infinite. To facilitate the study 

of CA, hardware and software simulations were 

created. However due to visualization purposes 

the study has the following limitations 

•   Number of cells is limited to the resolution of 

our simulating system, model  

•   Studies up to 2 dimensions 

•   Only 2 cell states – on, off 

The report will briefly introduce the simulation 

program and hardware used for the study which 

covers interesting topics of CA in 1 and 2 

dimensions namely elementary Cellular 

Automata (1D), Spiral Waves (2D) and The 

Game of Life (2D).  

2.   SIMULATION PROGRAM AND 

HARDWARE 

2.1.  Software 

A java applet was developed to help facilitate 

the visualization of 1 and 2 dimensional cellular 

automata. The applet can be found in the 

following website: http://ca.karanprime.science/. 

The applet has 4 modes as follows 

1.    The Game of Life simulation 

2.   Spiral Wave simulation 

3.   Elementary Simulation 

4.   Comparison for GOL simulation  
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The user interface of the applet is shown in 

figure 2.1. The interface is programmed to take 

in common variables and items such as the 

number of cells, start and speed buttons, and 

also parameters unique to the mode (run the 

applet for details). 

  
Figure 1: UI of the cellular automata applet used in the 
study 

2.2.  Hardware 

Arduinos were used as the main drivers to 

control physical LED matrices which mimics the 

lattice of cells. And in some cases, a random 

number generator was implemented by using the 

Arduino to control a LCD display.  

The Arduinos used are of various models, 

mainly Uno and Mega. The following things 

were implemented, 

1.   The Game of Life on a 8x8 LED matrix 

2.   Elementary cellular automata of various 

rules on a 8x8 LED matrix 

3.   Random number generator (based on 

rule 30 of elementary cellular automata) 

on a LCD display   

 

3.   THE GAME OF LIFE 

The game of life is a 2 dimensional cellular 

automata. The game only requires an initial start 

state, which will evolve after discreetly in time 

according to the rules governing it (covered 

below). It is termed the game of life because the 

evolving patterns closely resembles the struggles 

of living organisms. Therefore naturally each cell 

has only 2 states, which are dead or alive. The 

game was invented by mathematician John 

Conway in 1970. Conway carefully choses the 

rules to meet these criteria: 

•   No explosive growth 
•   Existence of small initial patterns that 

evolves into chaotic outcomes 
•   Potential candidates for Neumann Universal 

constructor 
3.1.  Rules 

The playing field of the game is a 2 dimensional 
grid of regularly spaced square cells. The number 
of cells can be infinite however the resources 
behind this simulation are finite the field studied 
limited to the resolution of the system running it.  

Each cell interacts with 8 
nearest neighbors 
shown in figure 2(a) 
where the light green cell 
is the cell in question and 
the 8 dark green cells are 
its nearest neighbors.  

The rules for each cell are as follows: 

1.   Live cell with less than two live neighbors 
dies as if caused by under-population. 

2.   Live cell with two or three live neighbors 
lives on to the next iteration. 

3.   Live cell with more than three live neighbors 
dies as if caused by overcrowding. 

Figure 2(a): Eight 
nearest neighbors 
of a cell 
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4.   Dead cell with exactly three live neighbors 
becomes alive resembling reproduction. 
 

3.2.  Patterns 

Some frequently occurring patterns in the game 
can be categorize as still lifes and oscillators and 
space ship.  

3.3.  Still Lifes 

Still lifes are static patterns that 
stay in the state forever if 
undisturbed. The most 
common still life is the 
block (see figure 2(b)). 
Other common still lifes are 
shown in figure 3, 4 and 5. 

     

Figure 3: Still Life known as the Beehive(left) and Boat 

 

Figure 4: Still life known as the Loaf 

Pseudo still life made up of 2 or more “island” 
can exist even though the individual “island” 
alone might not be a still life. Figure 5 and 6 
shows some commonly found pseudo still lifes. 

         

Figure 5: Pseudo life known as Bi-Hive (left) consist of 2 
still life "island" while the right pesudo life consist of 2 

non-still life "island" 

  

Figure 6: Pseudo Still Life known as the Honey Farm 
which consist of 4 islands 

3.4.  Oscillators 

A still life can be seen as repeating itself with a 
period of 1 and naturally there should be life with 
periods more than 1. This patterns are termed as 
oscillators. Figure 7-9 shows oscillators of period 
2, 5 and 8 along with their corresponding patterns 
in each generation. Oscillators are not limited to 
what is shown here, in fact there are many more 
known oscillators with various periods in the 
game. 

     

Figure 7: Period 2 oscillator, Blinker 

   

 

Figure 8: Period 5 Oscillator, Octagon 

  

Figure 2(b): Still 
Life known as the 
block 
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Figure 9: Period 8 Oscillator, Kok’s Galaxy 

Spaceships 

There are also patterns that reappears a finite 
period however in a different position. The 
pattern can be seen as travelling in space with a 
velocity and hence such patterns are termed as 
spaceships. Like all patterns introduced, there are 
numerous kinds of spaceships, the 2 simplest one 
along with their trajectory are shown in figure 10 
and 11.  

  

Figure a0: Spaceship known as the Glider travelling 
diagonally across space 

  

Figure 11: Spaceship known as the Lightweight spaceship 
(LWSS) travelling horizontally across space 

Other Interesting Patterns 

Guns 

During the early stages of the game, Conway 
posed a challenge to anyone who can find a 
initial configuration that will grow infinitely. 
This led to several very interesting findings. 
Firstly the challenge was won by a team from 
MIT with their discovery of what is known as 
the “Gosper gun” (see figure 12). This pattern 
acts literally like a gun shooting out gliders (see 

figure 10) periodically (every 15 iteration, see 
figure 13). The gun can be seen as a life giving 
machine, giving birth to infinitely many living 

spaceships that travels across space. Smaller 
patterns that exhibit infinite growth were found 
subsequently. 

There is an interesting phenomenon with the 
Gosper gun that will be discussed. But before 
that we will talk about periodic space. Imagine 
that the ends of the playing field are stitched 
together; the top to the bottom and left to right 
leading to a toroidal array. In this way the 
pattern is allowed to evolve freely without losing 
them at the edges. The stitched field can also be 
seen as the surface of a sphere where they are no 
ends to it. Now putting a Gosper gun in such a 
playing field will eventually shoot itself to 
“death” when the gliders generated by it wraps 
around to destroy it. A series of snapshots of the 
event is shown in figure 13. Future more, upon 
destruction, there will be a surge of activities 
taking place resembling explosive after effects.  

Figure12: The Gosper Gun 
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Figure13: Snapshots of the Gosper Gun generating gliders 
within a toroidal array which eventually destroy itself in 

spectacular fashion 

Methuselahs 

 Also of interesting properties are patterns called 
“Methuselahs” which evolve over long periods 
before reaching equilibrium. One of the most 
intriguing is called the 
Acorn (shown in figure 
14). At merely 7 initial 
living cells, the pattern 
takes 5206 generations to 
settle down with an 
astonishing 633 living cells including 13 gliders. 
Such a model resembles a living organism at 
work, and surprising the process of only 7 cells 
and 4 simple rules!  

 

4.   SPIRAL WAVES 

There are numerous spiral wave like patterns 
observed in reality such as in the brain and heart, 
combs of bees, and in chemical reaction such as 
Belousov-Zhabotinsky reaction, oxidation of 
carbon monoxide on platinum surfaces. They 
have also appeared in numerical simulations like 
the reaction-diffusion systems2. 

 

Figure 14(a): Belousov-Zhabotinsky Reaction 

 

Figure 14(b): Spiral combs of bees 

We will first talk about the rules to simulate a 
spiral wave like the one shown in figure 17. This 
wave when generated will last forever. However 
we are not interested in such spiral waves, instead 
it will be the base where we attempt to simulate 
spiral waves observed in nature. 

Rules 

The playing field is a 2 dimensional grid of 
square cells which may be infinitely many. 
However the resources 
behind the simulation are 
finite therefore the grid 
studied in this report is 
limited to the resolution of 
the system running the 
simulation.  

Each cell interacts with 
4 nearest neighbours shown in figure 15 where 
the red cell is the cell in question and the 4 dark 
green cells are its neighbours.  

The rules for each cell are as follows: 

Figure 14: 
Methuselahs known 
as the Acorn 

Figure 15: Four 
nearest neighbors 
of a cell 
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1.   The start state of every cell is 
deactivated unless they are activated in 
the initial condition. 

2.   The cell will activate if any of its 
neighbors are activated. 

3.   Cell will deactivate after activating. 

The duration to remain activated when activated 
and the duration to remain deactivated after 
activation will be a set as a variable of the 
simulation. 

Initial conditions 

Two of many initial conditions to generate a 
spiral wave are shown in figure 16. Both 
conditions generate the same kind of spiral wave 
shown in figure 5. 

    

Figure 16: Two different initial conditions to generate a 
spiral wave 

The red cells in figure 16 are ones that will have 
to stay deactivated for a fixed duration after the 
simulation starts while the dark green ones will 
activate for a fixed duration and the rest of the 
light green cells are deactivated. Note that the 
light green cells can activate once rule 2 is 
observed contrary to the red cells who have to be 
deactivated for a duration before being able to 
activate. 

 

Figure 17: Resulting spiral wave from the initial conditions 
given in figure 16 

Human Spiral Wave 

To simulate each cell as a human being we took 
the following assumptions: 

•   Time is needed to react, and this time 
varies according to individual. 

•   There will be an error in determining the 
instructed duration to stay activated 
once activated 

•   There will also be an error in 
determining the instructed duration to 
stay deactivated once deactivated 

For simplicity, we will define the duration to stay 
activated once activated as activation duration 
and similarly for deactivation as deactivation 
duration. Note that due to time constrains, only 
the latter 2 assumptions were implemented which 
means each cell takes exactly 0.1s to react (time 
step used is 0.1s). The simulation ran with a 0.5 ± 
0.1s activation duration with a 1.0 ± 0.1s 
deactivation duration and the results are shown in 
figure 18. 

   

   

Figure 18: Snapshot of the various iterations of the human 
wave simulation. 0th (Top left), 19th, 108th (top right), 557th 
(bottom left), 1362nd and 2233rd iteration. 

The simulation result has successfully simulated 
a circular spiral wave after a number of iterations. 
Unfortunately it is still far from reality2 shown in 
figure 19, which the wave eventually dies off 
after approximately 26s.  

One of the assumptions made to model over the 
human wave was not implemented which we 
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believe is a significant modelling factor. It is 
observed that the simulated wave is spiralling 
faster than the real observation which we believe 
implementing a varying reaction time for each 
cell will significantly slow it down to more 
accurately model the human wave. 

   

Figure 19: Snapshot of a video clip showing a real human 
spiral wave3 

Belousov-Zhabotinsky Reaction 

Remarkably, running the simulation on a 
128×128 grid with an exact activation duration of 
0.2s, a deactivation duration of 1.0 ± 0.1s with an 
exact reaction time of 0.2s (time step used is 0.2s) 
generated a pattern that starkly resembles the 
spiral waves generated in the Belousov-
Zhabotinsky reaction (see figure 20 and 21). 

 

Figure 20: Spiral waves observed in Belousov-Zhabotinsky 
Reaction4 

The simulation (see figure 9) started off with a 
single spiral wave followed with 2 and multiple 
spiral waves were generated. Although the 
simulated spiral waves look less rounded than 
reality, it might be due to the low resolution used 
(grid size). Varying the parameters accordingly 
might yield a pattern closer to what is observed in 
figure 8. 

   

Figure 21: Snapshots of the simulation on the 0th, 59th, 
960th, 1962nd, 2901st, and the 3259th iteration. 

 

5.   ELEMENTARY CELLULAR 

AUTOMATA 

Elementary cellular automata are 1 dimensional 
cellular automata. They evolve generation by 
generation following a rule set such that each 
generation is a function of the previous 
generation. Each generation is an array of cells, 
with an on/true/alive state and an off/false/dead 
state.   
While they have been studied in their primitive 
form since 1940s, the bulk of research on 
elementary cellular automata was done by 
Stephen Wolfram. He started studying them 
independently in the 1980s and published his 
magnum-opus, “A New Kind of Science”, a 1280 
page treatise on cellular automata in 2002. 
Elementary cellular automata are very powerful 
and useful for modelling systems. Some cellular 
automata are also capable of producing Turing 
complete machines (universal computers) with 
the right initial conditions. In this paper, we will 
explore one such application, generating random 
numbers using Rule 30. Even Wolfram’s 
Mathematica uses Rule 30 to generate random 
numbers.5 
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5.1 Rules 

Since elementary cellular automata are one 
dimensional, they can be represented as arrays of 
bits. As stated previously, the number of cells can 
be infinite however the resources behind this 
simulation are finite the field studied limited to 
the resolution of the system running it. We define 
the neighborhood of each cell as the cell itself and 
its two adjacent neighbors: one to the left and one 
to the right. The neighborhood of the first and the 
last cells of each generation is dependent on the 
boundary condition (discussed in the next 
section).  
Now the state of each cell is determined the state 
of its neighborhood in the previous generation. 
We can set the initial generation (called 
generation 0) arbitrarily or however we want. The 
state of each cell in subsequent generations is 
determined by the formula: 

𝑪𝒆𝒍𝒍  𝒔𝒕𝒂𝒕𝒆  𝒂𝒕  𝒈𝒆𝒏  𝒏
=   𝒇(𝑪𝒆𝒍𝒍  𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒓𝒉𝒐𝒐𝒅  𝒂𝒕  𝒈𝒆𝒏   𝒏 − 𝟏 ) 

Equation 1 Determining cell state at gen n 

Since each neighborhood consists of three bits,  
23 = 8 unique neighborhoods are possible. A rule 
set is an 8 bit array that maps the new cell state to 
each unique neighborhood. Rules are named by 
converting the 8 bit array into decimal. So Rule 
30 corresponds to 0b00011110. 

 In our simulation, we used this algorithm to 
generate cellular automata: 

1.   Define ruleset as an array of 8 bits, eg  
{0, 1, 0, 1, 1, 0, 1, 0} for Rule 90. 

2.   Set the generation 0 array. Default is 1 
living cell at the center, eg  {0, 0, 1, 0, 0} 

3.   Form a 3 bit binary number from the 
neighborhood of each cell in the current 
generation (subject to boundary 
conditions), eg {0, 1, 0} for the center 
cell.  

4.   Set the decimal equivalent of that 3 bit 
number to a variable “x” (“x” will be a 
number from 0 to 7), eg “x” = 2 

5.   Using “x” as the index, set the state of 
that cell as the bit at the (x+1)th position 
in the ruleset array. So new gen center 
cell = ruleset[x] = ruleset[2] = 0. 

5.2 Rules and Classification 

(Note: All automatons on this section(5.2) are of 
size 33, i.e the size of the array is 33.) 

Since there are 28 = 256 unique combinations of 
8 bit arrays, there are 256 rules, numbered from 
Rule 0 to Rule 255. These rules are functions 
which map the new cell state to each unique 
neighborhood. In the program, this parameter can 
be set by typing a rule number in the ruleset text 
field. If the rule number is out of the 0-255 range, 
only the first 8 bits in the binary representation of 
the rules will be used. 

Wolfram6 classified Rules of Cellular Automata 
into 4 categories: 

1.   Class 1: Evolution leads to a stable state. 
All cells reach an equilibrium. 
Examples: Rule 222, Rule 0 etc. 

  

  

  

Figure 21 A class 1 automaton (Rule 222) at 
generations 0, 16 and 100 respectively 

  
2.   Class 2: Evolution leads to a set of 

separated simple stable or periodic 
structures. 
All cells oscillate among 0 and 1. 
Example: Rule 190 
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Figure 22 A class 2 automaton (Rule 190) at 

generations 0, 16 and 100 respectively 

3.   Class 3: Evolution leads to a chaotic 
pattern. These are random and chaotic. 
The state of the cells cannot be 
determined without numerical simulation. 
Example: Rule 30 
 

 

 

Figure 23 A class 3 automaton (Rule 30) at generations 0, 
16 and 100 respectively 

4.   Class 4: Evolution leads to complex 
localized structures, sometimes long-
lived.  
These can be thought of as a mix between 
class 2 and class 3. One can find 
repetitive, oscillating patterns inside the 
CA, but where and when these patterns 
appear is unpredictable and seemingly 
random. 
Example: Rule 110 
 
 
 
 
 

Figure 24 A class 4 automaton (Rule 110) at generations 0, 
16 and 100 respectively 

5.3 Parameters 

We designed the simulator such that the 
following parameters can be varied. 

5.3.1 Boundary Conditions 

Boundary conditions affect the first and the last 
cells of the array. Boundary conditions determine 

what neighborhood will be used for those cells. 
We can use two types of boundary conditions in 
the program: 

1.   Circular Boundary: In this case, the array 
is treated as a ring. So, for the first cell, 
the neighborhood would consist of the 
last cell in that generation, the cell itself, 
and the second cell. For the last cell, the 
neighborhood consists of the cell to the 
right of the last cell, the last cell itself and 
the first cell. 

2.   Fixed Boundary: In this case, the first and 
the last cell are set to a constant off 
/0/false state. The ruleset is only applied 
to cells between the first and the last cell. 

Changing the boundary conditions often lead to a 
drastic changes in the automaton as it evolved. 
However, they only affect the outcome when 
state changes occur at the boundaries. 

Example : When fixed boundary conditions were 
applied to Rule 30, it reached an equilibrium state 
in 200(dependent on the size of  array) and started 
behaving like a class 1 automaton. When a 
circular boundary condition was applied, it 
started behaving like a chaotic class 3 automaton 
again. 

 

Figure 25 A Size 100 Rule 30 with fixed boundaries  at 
generations 50, 100 and 200 respectively 

 

Figure 26 A Size 100 Rule 30 with circular boundaries  at 
generations 50, 100 and 200 respectively 
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We think this happens because Rule 30 is chaotic 
in the middle and has a fixed pattern at its ends. 
This becomes obvious when we view multiple 
generations with respect to time. 

 

 

Figure 27 A Size 200 Rule 30 at generation 100 

From figure 27, we can say that the left part of the 
automaton is shows a stable pattern which 
translates leftwards with every generation. 
However, once it reaches the left boundary, it 
starts replicating itself when the boundaries are 
fixed and gradually takes over the entire 
automaton (see figure 25). When the boundaries 
are fixed, the program only fills the automaton 
with the leftmost cells. When the boundaries are 
circular, the program fills the automaton with 
central cells irrespective of the size of that 
generation. 

5.3.2 Initial State 

Changes in the initial state, or generation 0 also 
lead to big changes in the automaton. Our 
program lets the user change the initial state by 
clicking on cells to toggle their states. The default 
generation 0 is that all cells will be dead except 
the middle cell. 

Example: Rule 90 is a beautiful automaton that 
produces the Sierpinsky Triangle.  
However, when a random initial condition is 
applied, it makes different pattern, which looks 
like intereference between multiple Sierpinsky 
triangles. 

 

Figure 28 A Size 100 Rule 90 at generation 50 with default 
initial conditions 

 

Figure 29 A Size 100 Rule 90 at generation 50 with 
arbitrary initial conditions 

5.3.3 Size of the array 

The size can be changed by entering the required 
size in the “col:” text field. While running the 
program with different conditions, we noticed 
that in some cases, the output was not as 
expected. We think these are special cases that 
occur because of resolution limits.  

Example: Disappearing Sierpinsky Triangle at 
size 64. When we ran rule 90 at size 64, all the 
cells died after 32 generations. When the dead 
automaton continued evolving, the pattern on 
our 64x64 board disappeared after 96 iterations. 

 

Figure 30 A Size 64 Rule 30 on a 64x64 board with 
circular boundaries at generations 32, 77 and 96 

respectively 
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5.4 Applications 

Elementary cellular automata have widespread 
applications. Applications include fractal 
generation, chaotic system simulation using 
class 3 automata: traffic systems modelling7, 
password generation, computing machines and 
other complex machines using class 4 automata. 

5.4.1 Custom Random Number Generator 
using Rule 30 

After we found out that Mathematica uses Rule 
30 to generate random numbers, we wrote our 
own Random Number generator using Rule 30 
that uses the central column of a size 10 rule 30 
automata. 

Algorithm for generator: 

1.   Take a seed value from the user. 
2.   Run the algorithm in Section 5.1 with an 

array of size 10 for (seed + 10) 
iterations. 

3.   From iterations seed to seed + 10, save 
the value of the central element in a 10 
bit array. 

4.   Convert that array to floating point 
decimal. 

5.   That is your random number between 0 
and 1024. 

We implemented this in Java (RandGen.java) 
and Arduino (RandGenArduino.ino). 

 

 

 

 

 

 

However, this did not produce truly random 
numbers, it produced some discrete values with 
disproportionate probabilities. Given the limited 
time frame, we could only experiment with this 
and a few other algorithms. 
We will look into this matter with more 
resources. 

6.   LIMITATIONS 

The biggest limitation we had for this study was 
the time constraint. Cellular Automata is a vast 
topic with a lot of breadth as well as depth. We 
could only scratch the surface of cellular 
automata in the time allotted. 
 
From a programming point of view, the biggest 
problem was managing the screen real estate in 
our very visual app. Because of limited screen 
resolution, we could only allow low resolution 
(size 200 by 200) cellular automatons.  
 
Our random number generator also didn’t work 
as expected. We will look into that when time 
permits.  
 
We felt somewhat limited when reading other 
papers on cellular automata because we of our 
lack of understanding of formal logic theory.  

7.   CONCLUSION 

The study has covered the basic principles 
behind elementary CA, The Game of Life and 
spiral waves. And also implemented elementary 
CA as a random number generator using rule 30 
and employed the spiral wave CA to model 
patterns observed in the Belousov-Zhabotinsky 
reaction and the human spiral wave; by mainly 
using the Java applet. However these are only a 
few of the many applications of cellular 
automata which include but not limited to 
applications in computer processors, 
cryptography, error corrections, solving of 
PDEs, traffic patterns.  

Figure 31 Plot between seed values and random 
value outputs for seed values  0 to 2000. 
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It is remarkable that so much was born from a 
model with a few simple rules – from 
phenomenon observed in nature, to applications 
like random number generator to problem 
solving in mathematics. 
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