
1

Cellular Automata Simulations
Tan Kok Cheng, Anthony
School of Physics, Georgia Institute of Technology
School of Physical and Mathematical Sciences, Nanyang Technological University

Shah, Karan

School of Physics, Georgia Institute of Technology
College of Computing, Georgia Institute of Technology

Stanley, David

School of Physics, Georgia Institute of Technology

Abstract: Cellular automata are known for their remarkable ability to exhibit complex behaviors from a few

simple rules. With the aid of Java applets and visualization hardware, we explore 1 to 2 dimensional cellular

automation which includes elementary cellular automata, the Game of Life and spiral waves. And also when

applicable, explore the possible application of them.

1. INTRODUCTION

Cellular automata (CA) are discrete, rule-based

computational systems first proposed by von

Neumann in early 1950s. They have been

observed to exhibit remarkably complex behavior

from simple rules which can be useful to model

complex systems in the scientific field.1

The simple model consist of a lattice of regularly

spaced cells, each with a finite number of state.

Theoretically, this lattice can be of any

dimensions but the model is largely studied in our

physical dimensions ranging from 1 to 3

dimensions. The number of cells in each

dimension can be infinite. To facilitate the study

of CA, hardware and software simulations were

created. However due to visualization purposes

the study has the following limitations

• Number of cells is limited to the resolution of

our simulating system, model

• Studies up to 2 dimensions

• Only 2 cell states – on, off

The report will briefly introduce the simulation

program and hardware used for the study which

covers interesting topics of CA in 1 and 2

dimensions namely elementary Cellular

Automata (1D), Spiral Waves (2D) and The

Game of Life (2D).

2. SIMULATION PROGRAM AND

HARDWARE

2.1. Software

A java applet was developed to help facilitate

the visualization of 1 and 2 dimensional cellular

automata. The applet can be found in the

following website: http://ca.karanprime.science/.

The applet has 4 modes as follows

1. The Game of Life simulation

2. Spiral Wave simulation

3. Elementary Simulation

4. Comparison for GOL simulation

2

The user interface of the applet is shown in

figure 2.1. The interface is programmed to take

in common variables and items such as the

number of cells, start and speed buttons, and

also parameters unique to the mode (run the

applet for details).

Figure 1: UI of the cellular automata applet used in the
study

2.2. Hardware

Arduinos were used as the main drivers to

control physical LED matrices which mimics the

lattice of cells. And in some cases, a random

number generator was implemented by using the

Arduino to control a LCD display.

The Arduinos used are of various models,

mainly Uno and Mega. The following things

were implemented,

1. The Game of Life on a 8x8 LED matrix

2. Elementary cellular automata of various

rules on a 8x8 LED matrix

3. Random number generator (based on

rule 30 of elementary cellular automata)

on a LCD display

3. THE GAME OF LIFE

The game of life is a 2 dimensional cellular

automata. The game only requires an initial start

state, which will evolve after discreetly in time

according to the rules governing it (covered

below). It is termed the game of life because the

evolving patterns closely resembles the struggles

of living organisms. Therefore naturally each cell

has only 2 states, which are dead or alive. The

game was invented by mathematician John

Conway in 1970. Conway carefully choses the

rules to meet these criteria:

• No explosive growth
• Existence of small initial patterns that

evolves into chaotic outcomes
• Potential candidates for Neumann Universal

constructor
3.1. Rules

The playing field of the game is a 2 dimensional
grid of regularly spaced square cells. The number
of cells can be infinite however the resources
behind this simulation are finite the field studied
limited to the resolution of the system running it.

Each cell interacts with 8
nearest neighbors
shown in figure 2(a)
where the light green cell
is the cell in question and
the 8 dark green cells are
its nearest neighbors.

The rules for each cell are as follows:

1. Live cell with less than two live neighbors
dies as if caused by under-population.

2. Live cell with two or three live neighbors
lives on to the next iteration.

3. Live cell with more than three live neighbors
dies as if caused by overcrowding.

Figure 2(a): Eight
nearest neighbors
of a cell

3

4. Dead cell with exactly three live neighbors
becomes alive resembling reproduction.

3.2. Patterns

Some frequently occurring patterns in the game
can be categorize as still lifes and oscillators and
space ship.

3.3. Still Lifes

Still lifes are static patterns that
stay in the state forever if
undisturbed. The most
common still life is the
block (see figure 2(b)).
Other common still lifes are
shown in figure 3, 4 and 5.

Figure 3: Still Life known as the Beehive(left) and Boat

Figure 4: Still life known as the Loaf

Pseudo still life made up of 2 or more “island”
can exist even though the individual “island”
alone might not be a still life. Figure 5 and 6
shows some commonly found pseudo still lifes.

Figure 5: Pseudo life known as Bi-Hive (left) consist of 2
still life "island" while the right pesudo life consist of 2

non-still life "island"

Figure 6: Pseudo Still Life known as the Honey Farm
which consist of 4 islands

3.4. Oscillators

A still life can be seen as repeating itself with a
period of 1 and naturally there should be life with
periods more than 1. This patterns are termed as
oscillators. Figure 7-9 shows oscillators of period
2, 5 and 8 along with their corresponding patterns
in each generation. Oscillators are not limited to
what is shown here, in fact there are many more
known oscillators with various periods in the
game.

Figure 7: Period 2 oscillator, Blinker

Figure 8: Period 5 Oscillator, Octagon

Figure 2(b): Still
Life known as the
block

4

Figure 9: Period 8 Oscillator, Kok’s Galaxy

Spaceships

There are also patterns that reappears a finite
period however in a different position. The
pattern can be seen as travelling in space with a
velocity and hence such patterns are termed as
spaceships. Like all patterns introduced, there are
numerous kinds of spaceships, the 2 simplest one
along with their trajectory are shown in figure 10
and 11.

Figure a0: Spaceship known as the Glider travelling
diagonally across space

Figure 11: Spaceship known as the Lightweight spaceship
(LWSS) travelling horizontally across space

Other Interesting Patterns

Guns

During the early stages of the game, Conway
posed a challenge to anyone who can find a
initial configuration that will grow infinitely.
This led to several very interesting findings.
Firstly the challenge was won by a team from
MIT with their discovery of what is known as
the “Gosper gun” (see figure 12). This pattern
acts literally like a gun shooting out gliders (see

figure 10) periodically (every 15 iteration, see
figure 13). The gun can be seen as a life giving
machine, giving birth to infinitely many living

spaceships that travels across space. Smaller
patterns that exhibit infinite growth were found
subsequently.

There is an interesting phenomenon with the
Gosper gun that will be discussed. But before
that we will talk about periodic space. Imagine
that the ends of the playing field are stitched
together; the top to the bottom and left to right
leading to a toroidal array. In this way the
pattern is allowed to evolve freely without losing
them at the edges. The stitched field can also be
seen as the surface of a sphere where they are no
ends to it. Now putting a Gosper gun in such a
playing field will eventually shoot itself to
“death” when the gliders generated by it wraps
around to destroy it. A series of snapshots of the
event is shown in figure 13. Future more, upon
destruction, there will be a surge of activities
taking place resembling explosive after effects.

Figure12: The Gosper Gun

5

Figure13: Snapshots of the Gosper Gun generating gliders
within a toroidal array which eventually destroy itself in

spectacular fashion

Methuselahs

 Also of interesting properties are patterns called
“Methuselahs” which evolve over long periods
before reaching equilibrium. One of the most
intriguing is called the
Acorn (shown in figure
14). At merely 7 initial
living cells, the pattern
takes 5206 generations to
settle down with an
astonishing 633 living cells including 13 gliders.
Such a model resembles a living organism at
work, and surprising the process of only 7 cells
and 4 simple rules!

4. SPIRAL WAVES

There are numerous spiral wave like patterns
observed in reality such as in the brain and heart,
combs of bees, and in chemical reaction such as
Belousov-Zhabotinsky reaction, oxidation of
carbon monoxide on platinum surfaces. They
have also appeared in numerical simulations like
the reaction-diffusion systems2.

Figure 14(a): Belousov-Zhabotinsky Reaction

Figure 14(b): Spiral combs of bees

We will first talk about the rules to simulate a
spiral wave like the one shown in figure 17. This
wave when generated will last forever. However
we are not interested in such spiral waves, instead
it will be the base where we attempt to simulate
spiral waves observed in nature.

Rules

The playing field is a 2 dimensional grid of
square cells which may be infinitely many.
However the resources
behind the simulation are
finite therefore the grid
studied in this report is
limited to the resolution of
the system running the
simulation.

Each cell interacts with
4 nearest neighbours shown in figure 15 where
the red cell is the cell in question and the 4 dark
green cells are its neighbours.

The rules for each cell are as follows:

Figure 14:
Methuselahs known
as the Acorn

Figure 15: Four
nearest neighbors
of a cell

6

1. The start state of every cell is
deactivated unless they are activated in
the initial condition.

2. The cell will activate if any of its
neighbors are activated.

3. Cell will deactivate after activating.

The duration to remain activated when activated
and the duration to remain deactivated after
activation will be a set as a variable of the
simulation.

Initial conditions

Two of many initial conditions to generate a
spiral wave are shown in figure 16. Both
conditions generate the same kind of spiral wave
shown in figure 5.

Figure 16: Two different initial conditions to generate a
spiral wave

The red cells in figure 16 are ones that will have
to stay deactivated for a fixed duration after the
simulation starts while the dark green ones will
activate for a fixed duration and the rest of the
light green cells are deactivated. Note that the
light green cells can activate once rule 2 is
observed contrary to the red cells who have to be
deactivated for a duration before being able to
activate.

Figure 17: Resulting spiral wave from the initial conditions
given in figure 16

Human Spiral Wave

To simulate each cell as a human being we took
the following assumptions:

• Time is needed to react, and this time
varies according to individual.

• There will be an error in determining the
instructed duration to stay activated
once activated

• There will also be an error in
determining the instructed duration to
stay deactivated once deactivated

For simplicity, we will define the duration to stay
activated once activated as activation duration
and similarly for deactivation as deactivation
duration. Note that due to time constrains, only
the latter 2 assumptions were implemented which
means each cell takes exactly 0.1s to react (time
step used is 0.1s). The simulation ran with a 0.5 ±
0.1s activation duration with a 1.0 ± 0.1s
deactivation duration and the results are shown in
figure 18.

Figure 18: Snapshot of the various iterations of the human
wave simulation. 0th (Top left), 19th, 108th (top right), 557th
(bottom left), 1362nd and 2233rd iteration.

The simulation result has successfully simulated
a circular spiral wave after a number of iterations.
Unfortunately it is still far from reality2 shown in
figure 19, which the wave eventually dies off
after approximately 26s.

One of the assumptions made to model over the
human wave was not implemented which we

7

believe is a significant modelling factor. It is
observed that the simulated wave is spiralling
faster than the real observation which we believe
implementing a varying reaction time for each
cell will significantly slow it down to more
accurately model the human wave.

Figure 19: Snapshot of a video clip showing a real human
spiral wave3

Belousov-Zhabotinsky Reaction

Remarkably, running the simulation on a
128×128 grid with an exact activation duration of
0.2s, a deactivation duration of 1.0 ± 0.1s with an
exact reaction time of 0.2s (time step used is 0.2s)
generated a pattern that starkly resembles the
spiral waves generated in the Belousov-
Zhabotinsky reaction (see figure 20 and 21).

Figure 20: Spiral waves observed in Belousov-Zhabotinsky
Reaction4

The simulation (see figure 9) started off with a
single spiral wave followed with 2 and multiple
spiral waves were generated. Although the
simulated spiral waves look less rounded than
reality, it might be due to the low resolution used
(grid size). Varying the parameters accordingly
might yield a pattern closer to what is observed in
figure 8.

Figure 21: Snapshots of the simulation on the 0th, 59th,
960th, 1962nd, 2901st, and the 3259th iteration.

5. ELEMENTARY CELLULAR

AUTOMATA

Elementary cellular automata are 1 dimensional
cellular automata. They evolve generation by
generation following a rule set such that each
generation is a function of the previous
generation. Each generation is an array of cells,
with an on/true/alive state and an off/false/dead
state.
While they have been studied in their primitive
form since 1940s, the bulk of research on
elementary cellular automata was done by
Stephen Wolfram. He started studying them
independently in the 1980s and published his
magnum-opus, “A New Kind of Science”, a 1280
page treatise on cellular automata in 2002.
Elementary cellular automata are very powerful
and useful for modelling systems. Some cellular
automata are also capable of producing Turing
complete machines (universal computers) with
the right initial conditions. In this paper, we will
explore one such application, generating random
numbers using Rule 30. Even Wolfram’s
Mathematica uses Rule 30 to generate random
numbers.5

8

5.1 Rules

Since elementary cellular automata are one
dimensional, they can be represented as arrays of
bits. As stated previously, the number of cells can
be infinite however the resources behind this
simulation are finite the field studied limited to
the resolution of the system running it. We define
the neighborhood of each cell as the cell itself and
its two adjacent neighbors: one to the left and one
to the right. The neighborhood of the first and the
last cells of each generation is dependent on the
boundary condition (discussed in the next
section).
Now the state of each cell is determined the state
of its neighborhood in the previous generation.
We can set the initial generation (called
generation 0) arbitrarily or however we want. The
state of each cell in subsequent generations is
determined by the formula:

𝑪𝒆𝒍𝒍 𝒔𝒕𝒂𝒕𝒆 𝒂𝒕 𝒈𝒆𝒏 𝒏
= 𝒇(𝑪𝒆𝒍𝒍 𝒏𝒆𝒊𝒈𝒉𝒃𝒐𝒓𝒉𝒐𝒐𝒅 𝒂𝒕 𝒈𝒆𝒏 𝒏 − 𝟏)

Equation 1 Determining cell state at gen n

Since each neighborhood consists of three bits,
23 = 8 unique neighborhoods are possible. A rule
set is an 8 bit array that maps the new cell state to
each unique neighborhood. Rules are named by
converting the 8 bit array into decimal. So Rule
30 corresponds to 0b00011110.

 In our simulation, we used this algorithm to
generate cellular automata:

1. Define ruleset as an array of 8 bits, eg
{0, 1, 0, 1, 1, 0, 1, 0} for Rule 90.

2. Set the generation 0 array. Default is 1
living cell at the center, eg {0, 0, 1, 0, 0}

3. Form a 3 bit binary number from the
neighborhood of each cell in the current
generation (subject to boundary
conditions), eg {0, 1, 0} for the center
cell.

4. Set the decimal equivalent of that 3 bit
number to a variable “x” (“x” will be a
number from 0 to 7), eg “x” = 2

5. Using “x” as the index, set the state of
that cell as the bit at the (x+1)th position
in the ruleset array. So new gen center
cell = ruleset[x] = ruleset[2] = 0.

5.2 Rules and Classification

(Note: All automatons on this section(5.2) are of
size 33, i.e the size of the array is 33.)

Since there are 28 = 256 unique combinations of
8 bit arrays, there are 256 rules, numbered from
Rule 0 to Rule 255. These rules are functions
which map the new cell state to each unique
neighborhood. In the program, this parameter can
be set by typing a rule number in the ruleset text
field. If the rule number is out of the 0-255 range,
only the first 8 bits in the binary representation of
the rules will be used.

Wolfram6 classified Rules of Cellular Automata
into 4 categories:

1. Class 1: Evolution leads to a stable state.
All cells reach an equilibrium.
Examples: Rule 222, Rule 0 etc.

Figure 21 A class 1 automaton (Rule 222) at
generations 0, 16 and 100 respectively

2. Class 2: Evolution leads to a set of

separated simple stable or periodic
structures.
All cells oscillate among 0 and 1.
Example: Rule 190

9

Figure 22 A class 2 automaton (Rule 190) at

generations 0, 16 and 100 respectively

3. Class 3: Evolution leads to a chaotic
pattern. These are random and chaotic.
The state of the cells cannot be
determined without numerical simulation.
Example: Rule 30

Figure 23 A class 3 automaton (Rule 30) at generations 0,
16 and 100 respectively

4. Class 4: Evolution leads to complex
localized structures, sometimes long-
lived.
These can be thought of as a mix between
class 2 and class 3. One can find
repetitive, oscillating patterns inside the
CA, but where and when these patterns
appear is unpredictable and seemingly
random.
Example: Rule 110

Figure 24 A class 4 automaton (Rule 110) at generations 0,
16 and 100 respectively

5.3 Parameters

We designed the simulator such that the
following parameters can be varied.

5.3.1 Boundary Conditions

Boundary conditions affect the first and the last
cells of the array. Boundary conditions determine

what neighborhood will be used for those cells.
We can use two types of boundary conditions in
the program:

1. Circular Boundary: In this case, the array
is treated as a ring. So, for the first cell,
the neighborhood would consist of the
last cell in that generation, the cell itself,
and the second cell. For the last cell, the
neighborhood consists of the cell to the
right of the last cell, the last cell itself and
the first cell.

2. Fixed Boundary: In this case, the first and
the last cell are set to a constant off
/0/false state. The ruleset is only applied
to cells between the first and the last cell.

Changing the boundary conditions often lead to a
drastic changes in the automaton as it evolved.
However, they only affect the outcome when
state changes occur at the boundaries.

Example : When fixed boundary conditions were
applied to Rule 30, it reached an equilibrium state
in 200(dependent on the size of array) and started
behaving like a class 1 automaton. When a
circular boundary condition was applied, it
started behaving like a chaotic class 3 automaton
again.

Figure 25 A Size 100 Rule 30 with fixed boundaries at
generations 50, 100 and 200 respectively

Figure 26 A Size 100 Rule 30 with circular boundaries at
generations 50, 100 and 200 respectively

10

We think this happens because Rule 30 is chaotic
in the middle and has a fixed pattern at its ends.
This becomes obvious when we view multiple
generations with respect to time.

Figure 27 A Size 200 Rule 30 at generation 100

From figure 27, we can say that the left part of the
automaton is shows a stable pattern which
translates leftwards with every generation.
However, once it reaches the left boundary, it
starts replicating itself when the boundaries are
fixed and gradually takes over the entire
automaton (see figure 25). When the boundaries
are fixed, the program only fills the automaton
with the leftmost cells. When the boundaries are
circular, the program fills the automaton with
central cells irrespective of the size of that
generation.

5.3.2 Initial State

Changes in the initial state, or generation 0 also
lead to big changes in the automaton. Our
program lets the user change the initial state by
clicking on cells to toggle their states. The default
generation 0 is that all cells will be dead except
the middle cell.

Example: Rule 90 is a beautiful automaton that
produces the Sierpinsky Triangle.
However, when a random initial condition is
applied, it makes different pattern, which looks
like intereference between multiple Sierpinsky
triangles.

Figure 28 A Size 100 Rule 90 at generation 50 with default
initial conditions

Figure 29 A Size 100 Rule 90 at generation 50 with
arbitrary initial conditions

5.3.3 Size of the array

The size can be changed by entering the required
size in the “col:” text field. While running the
program with different conditions, we noticed
that in some cases, the output was not as
expected. We think these are special cases that
occur because of resolution limits.

Example: Disappearing Sierpinsky Triangle at
size 64. When we ran rule 90 at size 64, all the
cells died after 32 generations. When the dead
automaton continued evolving, the pattern on
our 64x64 board disappeared after 96 iterations.

Figure 30 A Size 64 Rule 30 on a 64x64 board with
circular boundaries at generations 32, 77 and 96

respectively

11

5.4 Applications

Elementary cellular automata have widespread
applications. Applications include fractal
generation, chaotic system simulation using
class 3 automata: traffic systems modelling7,
password generation, computing machines and
other complex machines using class 4 automata.

5.4.1 Custom Random Number Generator
using Rule 30

After we found out that Mathematica uses Rule
30 to generate random numbers, we wrote our
own Random Number generator using Rule 30
that uses the central column of a size 10 rule 30
automata.

Algorithm for generator:

1. Take a seed value from the user.
2. Run the algorithm in Section 5.1 with an

array of size 10 for (seed + 10)
iterations.

3. From iterations seed to seed + 10, save
the value of the central element in a 10
bit array.

4. Convert that array to floating point
decimal.

5. That is your random number between 0
and 1024.

We implemented this in Java (RandGen.java)
and Arduino (RandGenArduino.ino).

However, this did not produce truly random
numbers, it produced some discrete values with
disproportionate probabilities. Given the limited
time frame, we could only experiment with this
and a few other algorithms.
We will look into this matter with more
resources.

6. LIMITATIONS

The biggest limitation we had for this study was
the time constraint. Cellular Automata is a vast
topic with a lot of breadth as well as depth. We
could only scratch the surface of cellular
automata in the time allotted.

From a programming point of view, the biggest
problem was managing the screen real estate in
our very visual app. Because of limited screen
resolution, we could only allow low resolution
(size 200 by 200) cellular automatons.

Our random number generator also didn’t work
as expected. We will look into that when time
permits.

We felt somewhat limited when reading other
papers on cellular automata because we of our
lack of understanding of formal logic theory.

7. CONCLUSION

The study has covered the basic principles
behind elementary CA, The Game of Life and
spiral waves. And also implemented elementary
CA as a random number generator using rule 30
and employed the spiral wave CA to model
patterns observed in the Belousov-Zhabotinsky
reaction and the human spiral wave; by mainly
using the Java applet. However these are only a
few of the many applications of cellular
automata which include but not limited to
applications in computer processors,
cryptography, error corrections, solving of
PDEs, traffic patterns.

Figure 31 Plot between seed values and random
value outputs for seed values 0 to 2000.

12

It is remarkable that so much was born from a
model with a few simple rules – from
phenomenon observed in nature, to applications
like random number generator to problem
solving in mathematics.

8. REFERENCES

1 Stephen, W. (1983). Cellular Automata. Los
Alamos Science, 9, 2-21.

2Sandstede, B., & Scheel, A. (n.d.). Absolute
versus convective instability of spiral waves.
Physical Review E, 7708-7714.

3Largest human spiral wave ever made [Motion
picture]. (2014). United States: Georgia Institute
of Technology, School of Physics.

4Belousov–Zhabotinsky reaction - Turing -
Cargo example design. (n.d.). Retrieved April
20, 2015, from
http://cargocollective.com/turing/Belousov-
Zhabotinsky-reaction

5 Weisstein, Eric W. "Rule 30."
From MathWorld--A Wolfram Web
Resource. http://mathworld.wolfram.com/Rule3
0.html

6 Wolfram, S. (1984, January 1).
UNIVERSALITY AND COMPLEXITY IN
CELLULAR AUTOMATA. Retrieved April 25,
2015, from
http://new.math.uiuc.edu/im2008/dakkak/papers/
files/wolfram.universityofca.pdf

7 David, R., & Gerhenson, C. (n.d.). A Model of
City Traffic Based on Elementary Cellular
Automata. Retrieved April 25, 2015, from
http://www.complex-systems.com/pdf/19-4-
1.pdf

